基 本 信 息 | ||
姓名:张培根 性别:男 党派:中共党员 职称:副教授/博导、硕导 联系方式:18251951269 电子邮箱:zhpeigen@seu.edu.cn | 研究方向: (1) 电磁防护、热管理、新能源等先进功能材料 (2) 电子互连、封装材料 (3) 金属基复合材料 | |
个 人 简 介 | ||
张培根,1983年,河南南阳,东南大学材料学院副教授、博士生导师。2013年加入孙正明教授科研团队,2018年入选东南大学“至善青年学者”支持计划。近年来,针对电子互连材料的可靠性、层状晶体(MAX相等)及其衍生二维材料的基础与应用研究等方面取得重要进展,得到国家自然科学基金、国家重点研发计划、江苏省科技厅、江苏林泰新材科技股份有限公司等国家与地方的科研项目支持。在Advanced Materials, Nano-Micro Letters, Journal of Advanced Ceramics, Acta Materialia, Journal of Materials Chemistry A, Small Methods, Nanoscale Horizons等期刊发表学术论文100余篇,授权发明专利20余项。获江苏省科学技术奖,复合材料学会科学技术奖等。
承担科研项目 1. MAX相力化学分解与A位金属晶须生长机制,国家自然科学基金面上项目,项目负责人:张培根,2022/1-2025/12; 2. 异质相界面对低熔点金属晶须自发生长的影响机制研究,国家自然科学基金青年项目,项目负责人:张培根,2016/1-2018/12; 3. 金属晶须自发生长机理及其在微电子与新材料领域的应用基础研究,国家自然科学基金重点项目,主要参与人员,2018/1-2022/12(东南大学材料学院独立承担); 4. 面向高场应用的新型高性能CICC超导导体研制:课题3-:耐温高强度结构及高性能绝缘材料的关键问题研究,国家重点研发计划项目,主要参与人员,2018/1-2022/12; 5. MAX/MXene与相关二维材料及其在环境能源领域的应用基础研究,江苏省双创团队,主要参与人员,2018/1-2020/12; 6. 用于新能源汽车的MAX相陶瓷摩擦材料研究,江苏林泰新材科技股份有限公司,项目负责人:张培根,2024/1-2026/12; 7. 空位与界面对锡晶须自发生长的影响机制与无铅化抑制策略研究,江苏省自然科学基金,项目负责人:张培根,2020/7-2023/6; 8. 节能与新能源汽车湿式摩擦材料的研究,江苏林泰新材科技股份有限公司,项目负责人:张培根,2020/1-2023/12. 欢迎材料科学与工程、应用物理、化工、材料模拟、机器学习等专业背景的同学报考硕士生、博士生。 期待热爱材料的你加入课题组。 近期主要学术论文 1. Hu, F. et al. Sn Whiskers from Ti(2) SnC Max Phase: Bridging Dual-Functionality in Electromagnetic Attenuation. Small Methods n/a, e2301476 (2024). https://doi.org:10.1002/smtd.202301476 2. Hu, P. et al. Hyperelastic Kevlar Nanofiber Aerogels as Robust Thermal Switches for Smart Thermal Management. Adv Mater 35, e2207638 (2023). https://doi.org:10.1002/adma.202207638 3. Wu, F. et al. Multifunctional MXene/C Aerogels for Enhanced Microwave Absorption and Thermal Insulation. Nanomicro Lett 15, 194 (2023). https://doi.org:10.1007/s40820-023-01158-7 4. Tian, Z., Zhang, P., Sun, W., Yan, B. & Sun, Z. Vegard’s law deviating Ti2(SnxAl1−x)C solid solution with enhanced properties. Journal of Advanced Ceramics 12, 1655-1669 (2023). https://doi.org:10.26599/jac.2023.9220779 5. Yin, X. et al. Enhancing Ion Storage and Transport in Ti3C2Tz MXene via a “Sacrificial Cations” Strategy. Journal of Materials Chemistry A (2024). https://doi.org:10.1039/d3ta07867a 6. Yin, X., Zheng, W., Tang, H., Zhang, P. & Sun, Z. Novel 2D/2D 1T-MoS2/Ti3C2Tz heterostructures for high-voltage symmetric supercapacitors. Nanoscale 15, 10437-10446 (2023). https://doi.org:10.1039/d3nr01598j 7. Wu, X. et al. Influence of nano-mechanical evolution of Ti3AlC2 ceramic on the arc erosion resistance of Ag-based composite electrical contact material. Journal of Advanced Ceramics (2024). https://doi.org:10.26599/jac.2024.9220839 8. Tang, H. et al. Controlling tin whisker growth via oxygen-mediated decomposition of Ti2SnC. Journal of Materials Science 59, 1958-1967 (2024). https://doi.org:10.1007/s10853-023-09273-x 9. Hu, P. et al. Robust and Flame-Retardant Zylon Aerogel Fibers for Wearable Thermal Insulation and Sensing in Harsh Environment. Adv Mater 36, e2310023 (2024). https://doi.org:10.1002/adma.202310023 10.Xu, X. et al. Lithium storage performance and mechanism of nano-sized Ti2InC MAX phase. Nanoscale Horizons 8, 331-337 (2023). https://doi.org:10.1039/d2nh00489e 11.Xie, S. et al. Fabrication of Nano-sized Cr2GaC with a Bottom-Up Approach for Lithium Storage. ACS Applied Nano Materials 6, 20269-20277 (2023). https://doi.org:10.1021/acsanm.3c04180 12.Tian, Z. et al. Synthesis of Ti2(In Al1-)C (x = 0–1) solid solutions with high-purity and their properties. Journal of the European Ceramic Society 43, 5915-5924 (2023). https://doi.org:10.1016/j.jeurceramsoc.2023.06.060 13.Hu, F. et al. One-dimensional core-sheath Sn/SnO derived from MAX phase for microwave absorption. Journal of Materiomics (2023). https://doi.org:10.1016/j.jmat.2023.07.014 14.Zhang, Q. et al. Rapid and massive growth of tin whisker on mechanochemically decomposed Ti2SnC. Materials Today Communications 31 (2022). https://doi.org:10.1016/j.mtcomm.2022.103466 15.Zhang, Q. et al. Method for inhibiting Sn whisker growth on Ti2SnC. Journal of Materials Science 57, 20462-20471 (2022). https://doi.org:10.1007/s10853-022-07867-5 16.Tian, Z. et al. Tin whisker growth from titanium-tin intermetallic and the mechanism. Journal of Materials Science & Technology 129, 79-86 (2022). https://doi.org:10.1016/j.jmst.2022.04.034 17.Tian, Z. et al. Large‐scale preparation of nano‐sized carbides and metal whiskers via mechanochemical decomposition of MAX phases. International Journal of Applied Ceramic Technology 20, 823-832 (2022). https://doi.org:10.1111/ijac.14166 18.田志华 et al. MAX相表面金属晶须自发生长现象的研究现状与展望. 金属学报, 0-0 (2022). https://doi.org:10.11900/0412.1961.2021.00119 19.Zhou, A. G. et al. From structural ceramics to 2D materials with multi-applications: A review on the development from MAX phases to MXenes. Journal of Advanced Ceramics 10, 1194-1242 (2021). https://doi.org:10.1007/s40145-021-0535-5 20.Qiao, J. et al. Research progress of MXene-based catalysts for electrochemical water-splitting and metal-air batteries. Energy Storage Materials 43, 509-530 (2021). https://doi.org:10.1016/j.ensm.2021.09.034 21.Yan, B. et al. Oxygen/sulfur decorated 2D MXene V2C for promising lithium ion battery anodes. Materials Today Communications 22 (2020). https://doi.org:10.1016/j.mtcomm.2019.100713 22.Liu, Y. et al. Mechanisms behind the spontaneous growth of Tin whiskers on the Ti2SnC ceramics. Acta Mater 185, 433-440 (2020). https://doi.org:10.1016/j.actamat.2019.12.027 23.Yang, L. et al. Freestanding nitrogen-doped d-Ti3C2/reduced graphene oxide hybrid films for high performance supercapacitors. Electrochimica Acta 300, 349-356 (2019). https://doi.org:10.1016/j.electacta.2019.01.122 24.Liu, Y. et al. Confining effect of oxide film on tin whisker growth. Journal of Materials Science & Technology 35, 1735-1739 (2019). https://doi.org:10.1016/j.jmst.2019.03.042 25.Zheng, W. et al. Alkali treated Ti3C2Tx MXenes and their dye adsorption performance. Materials Chemistry and Physics 206, 270-276 (2018). https://doi.org:10.1016/j.matchemphys.2017.12.034 |