2022年发表文章:
[1].Zhu, Yin'an; Yao, Jia; Zhong, Xu; Lu, Tao; Pan, Ye*. Element immiscibility assisted Ru@Ni3B as an efficient electrocatalyst toward alkaline and acidic hydrogen evolution reaction[J]. Chemical Communications, 2022, 58: 6741-6744.
[2].Zhong, Xu; Zhu, Yin'an; Dai, Weiji; Yu, Jin;Lu, Tao; Pan, ye*. Electrochemically reconstructed high-entropy amorphous FeCoNiCrVB as a highly active oxygen evolution catalyst[J]. New Journal of Chemistry, 2022, 46: 8398-8406.
[3].Gu, Xu-han; Lu, Tao; Zhang, Tao; Guo, Wei; Pan, Ye*; Dai, Ting. Anisotropy of microstructures and mechanical properties in FeCoNiCr0.5 high-entropy alloy prepared via selective laser melting[J]. RARE METALS, 2022, 41: 2047-2054.
[4].Zhu, Yin'an; Luo, Yi; Yao, Jia; Dai, Weiji; Zhong, Xu; Lu Tao; Pan, Ye*. Atomically dispersed Pt-O coordination boosts highly active and durable acidic hydrogen evolution reaction[J]. Chemical Engineering Journal, 2022, 440, 135957.
[5].Wang, Ning; Pan, Ye*. Highly efficient synthesis of extremely fine nano-SnO2 photocatalytic materials by dealloying Cu50Sn50 alloy powders with mainly exposed {123} facts in eta-Cu6Sn5[J]. CRYSTENGCOMM, 2022, 20: 3791-3799.
2021年发表文章:
[1].Dai, Weiji; Bai, Xiaowan; Zhu, Yin’an; Zhang, Yue; Lu, Tao; Pan, Ye*; Wang, Jinlan*. Surface reconstruction induced in situ phosphorus doping in nickel oxides for an enhanced oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2021.
[2].Zhang, Yue; Dai, Weiji; Zhang, Pengfei; Lu, Tao*; Pan, Ye*. In-situ electrochemical tuning of (CoNiMnZnFe)3O3.2 high-entropy oxide for efficient oxygen evolution reactions[J]. Journal of Alloys and Compounds, 2021: 159064.
[3].Zhu, Yin'an; Dai, Weiji; Zhong, Xu; Lu, Tao; Pan, Ye*. In-situ reconstruction of non-noble multi-metal core-shell oxyfluorides for water oxidation[J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021,602: 55-63.
[4].Dai, Weiji; Zhu, Yin'an; Ye, Yike; Pan, Ye*; Lu, Tao*; Huang, Saifang*.Electrochemical incorporation of heteroatom into surface reconstruction induced Ni vacancy of NixO nanosheet for enhanced water oxidation[J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 608: 3030-3039.
[5].Zhang, Pengfei; Zhu, Yin'an; Zhang, Yue; Lu, Tao; Pan, Ye*. Heterogeneously structured FeCuBP amorphous-nanocrystalline alloy with excellent dye degradation efficiency[J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2021, 127: 330.
[6].Cai, Yao; Lu, Tao; Ma, Guidian; Li, Wang; Pan, Ye*; Ding, Hui*. Effects of geometrical characteristics on defect distributions in alloy components produced by selective laser melting[J]. CHINA FOUNDRY, 2021, 4: 369-378.
2020年发表文章:
[1].Dai, Weiji; Ren, Kai; Zhu, Yin-an;Pan, Ye*; Yu, Jin; Lu, Tao. Flower-like CoNi2S4/Ni3S2 nanosheet clusters on nickel foam as bifunctional electrocatalyst for overall water splitting[J]. Journal of Alloys and Compounds, 2020, 844,156252.
[2].Dai, Weiji; Pan, Ye*; Ren, Kai; Zhu, Yin-an; Lu, Tao. Heteroatom Ni alloyed pyrite-phase FeS2 as a pre-catalyst for enhanced oxygen evolution reaction[J]. Electrochimica Acta, 2020, 355,136821.
[3].Yue Zhang, Tao Lu*, Yike Ye, Weiji Dai, Yin’an Zhu,Ye Pan*. Stabilizing Oxygen Vacancy in Entropy-Engineered CoFe2O4-Type Catalysts for Co-prosperity of Efficiency and Stability in an Oxygen Evolution Reaction[J]. ACS Appl. Mater. Interfaces, 2020, 12, 29, 32548–32555.
[4].Wu, Shikai; Gao, Wei; Lu, Tao;Pan, Ye*. Co-Free High-Entropy Alloys Powders Immobilized by Electrospray and Microfluidics for Decolorization of Azo Dye[J]. Acta Metallurgica Sinica (English Letters), 2020, 33(8): 1103-1110.
[5].Zhang, Enming;Pan, Ye*; Lu, Tao; Zhu, Yin-an; Dai, Weiji. Novel synthesis of S-doped anatase TiO2 via hydrothermal reaction of Cu–Ti amorphous alloy[J] Applied Physics A: Materials Science and Processing, 2020, 126(8), 606.
[6].Di, Xin;Pan, Ye*; Dai, Weiji; Zhu, Yin-an; Lu, Tao. In-situ electrochemical oxidation of amorphous nanoporous NiZrO for enhanced non-enzymatic glucose sensing[J]. Materials Letters, 2020, 271,127694.
[7].Su, Huyun;Pan,Ye*; Lu, Tao. Design and Development of P/M Fe–P Based Magnetic Friction Material[J]. Physics of Metals and Metallography, 2020, 121(5), 439-445.
[8].Zhu, Yin'an;Pan, Ye*; Dai, Weiji; Lu, Tao. Dealloying Generation of Oxygen Vacancies in the Amorphous Nanoporous Ni–Mo–O for Superior Electrocatalytic Hydrogen Generation[J]. ACS Applied Energy Materials, 2020, 3(2):1319-1327.
[9].Chen, Feiyang; Lu, Tao;Pan, Ye*. Effects of Grain Refinement on Tensile Properties and Precipitation Kinetics of Al-Si-Mg Alloys Cast in Sand Molds[J]. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020.
[10].Chai, Wenke; Lu, Tao;Pan, Ye*. Corrosion behaviors of FeCoNiCr (x = 0, 0.5, 1.0) multi-principal element alloys: Role of Cr-induced segregation[J]. Intermetallics, 2020, 116:106654.
[11].Zhu, Yin-an;Pan, Ye*; Dai Weiji. Synthesis of hybrid metal oxides with high degradation efficiency via a self-propagating process of metallic glasses[J]. Ceramics International, 2020, 46(1): 622-628.
2019年发表文章:
[1].Wu, Shikai; Lu, Jie; Lu, Tao; Pan, Ye*. Entrapment of AlCrFeMn based high entropy alloys in calcium alginate hydrogel balls for decolorization of azo dyes[J]. Materials Research Express, 2019, 6(11): 1165d4. (WOS:000495699600003, IF:1.449, JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY, Q3)
[2].Lu, Tao; Chai, Wenke; Dai, Ting; Pan, Ye*. FeCoNiCr0.5Alx High-Entropy Alloys with Dual-Phase Solidification Microstructure and High Compressive Properties[J]. JOM, 2019, 71(10): 3460-3465. (WOS:000487659800016, IF:2.305, JCR: METALLURGY & METALLURGICAL ENGINEERING, Q1)
[3].Lu, Jie; Pan, Ye*; Zhong, Qifeng; Liu, Bing. Guided cellular orientation concurrently with cell density gradient on butterfly wings[J]. RSC Advances, 2019, 9(44): 25875-25879. (WOS:000481879400059, IF:3.049, JCR: CHEMISTRY, MULTIDISCIPLINARY, Q2)
[4].Li, Xingzhou; Wu, Jili; Pan, Ye*. Preparation of nanostructured Cu/Zr metal mixed oxides via self-sustained oxidation of a CuZr binary amorphous alloy[J]. Journal of Materials Science & Technology, 2019, 35(8): 1601-1606. (WOS:000470677300011, IF:5.04, JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY, Q1)
[5].Wu, Shikai; Pan, Ye*; Lu, Jie; Wang, Ning; Dai, Weiji; Lu, Tao. Effect of the addition of Mg, Ti, Ni on the decoloration performance of AlCrFeMn high entropy alloy[J]. Journal of Materials Science & Technology, 2019, 35(8): 1629-1635. (WOS:000470677300014, IF:5.04, JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY, Q1)
[6].Dai, Weiji; Lu, Tao; Pan, Ye*. Novel and promising electrocatalyst for oxygen evolution reaction based on MnFeCoNi high entropy alloy[J]. Journal of Power Sources, 2019, 430: 104-111. (WOS:000474502800014, IF:7.467, JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY, Q1)
[7].Lu, Tao; Chai, Wenke; Pan, Ye*; Dai, Ting; Sun, Dongke. CoCrFeNi Multi-principal Element Alloy Prepared Via Self-propagating High-Temperature Synthesis Plus Investment Casting Method[J]. Metallurgical and Materials Transactions B, 2019, 50(1): 32-35. (WOS:000456070300006, IF:1.952, JCR: METALLURGY & METALLURGICAL ENGINEERING, Q2)
[8].Wu, Shi-kai; Pan, Ye*; Wang, Ning; Lu, Tao; Dai, Wei-ji. Azo dye degradation behavior of AlFeMnTiM (M= Cr, Co, Ni) high-entropy alloys[J]. International Journal of Minerals, Metallurgy, and Materials, 2019, 26(1): 124-132. (WOS:000454909900013, IF:1.221, JCR: METALLURGY & METALLURGICAL ENGINEERING, Q3)
2018年发表文章:
[1]Wang, N., Pan, Y*., Dai, W., Wu, S., Zhu, Y. A., & Zhang, E. (2018). Dealloying synthesis of SnO2TiO2 solid solution and composite nanoparticles with excellent photocatalytic activity. Applied Surface Science, 457, 200-207.
[2]Jing, L. , Pan, Y. , Lu, T. , & Chai, W. . (2018). Refinement effect of two rare earth borides in an al-7si-4cu alloy: a comparative study. Materials Characterization, 145, 664-670.
[3]Chen, G., Pan, Y*., Lu, T., Wang, N., & Li, X. (2018). Highly catalytical performance of nanoporous copper for electro-oxidation of methanol in alkaline media. Materials Chemistry and Physics, 218, 108-115.
[4]Jing, L. J. , Pan, Y. , Tao, L. U. , Jin-Hong, P. I. , & Teng-Fei, G. U. . (2018). Nucleation potency prediction of lab_6 with e2em model and its influence on microstructure and tensile properties of al-7si-0.3mg alloy.中国有色金属学报(英文版).
[5]Li, C., Pan, Y*., Lu, T., Jing, L., & Pi, J. (2018). Effects of Ti and La Additions on the Microstructures and Mechanical Properties of B-Refined and Sr-Modified Al–11Si Alloys. Metals and Materials International, 1-10.
[6]Wang, N., Pan, Y*., & Wu, S. (2018). Relationship between dealloying conditions and coarsening behaviors of nanoporous copper fabricated by dealloying Cu-Ce metallic glasses. Journal of materials science & technology, 34(7), 1162-1171.
[7]Gu, T., Pan, Y*., Lu, T., Li, C., & Pi, J. (2018). Effects of boron addition on the morphology of silicon phases in Al-Si casting alloys. Materials Characterization, 141, 115-119.
[8]Jing, L., Pan, Y*., Lu, T., Li, C., Pi, J., & Sheng, N. (2018). Application of Al-2La-1B Grain Refiner to Al-10Si-0.3 Mg Casting Alloy. Journal of Materials Engineering and Performance, 1-6.
[9]Li, X., Pan, Y*., & Lu, T. (2018). Magnetocaloric effect in Fe-based amorphous alloys and their composites with low boron content. Journal of Non-Crystalline Solids, 487, 7-11.
[10]Dai, W., Pan, Y*., Wang, N., Wu, S., Li, X., Zhu, Y. A., & Lu, T. (2018). Nanocrystalline NiS particles synthesized by mechanical alloying as a promising oxygen evolution electrocatalyst. Materials Letters, 218, 115-118.
[11]Xu, J. J., Pan, Y*., Lu, T., & Bo, B. (2018). Synergistic effects of composition and heat treatment on microstructure and properties of vacuum die cast al-si-mg-mn alloys. China Foundry, 15(2), 117-123.
[12]Wang, N., Pan, Y*., Wu, S., Zhang, E., & Dai, W. (2018). Rapid synthesis of rutile TiO2 nano-flowers by dealloying Cu60Ti30Y10 metallic glasses. Applied Surface Science, 428, 328-337.
[13]Wu S., Pan, Y*., Wang N., et al. Rapid decoloration of azo dye Direct Blue 6 by AlCrFeMn high entropy alloy[J]. Rsc Advances, 2018, 8(72):41347-41354.
2017年发表文章:
[1]Liu, X., Ye, P*., Tang, Z., Weiqiao, H. E., & Tao, L. U. (2017). Microstructure control and high temperature properties of al-mn-based alloys. Acta Metallurgica Sinica.
[2]Wang, N., Pan, Y*., Lu, T., Li, X., Wu, S., & Wu, J. (2017). A new ribbon-ignition method for fabricating p-cuo/n-ceo 2, heterojunction with enhanced photocatalytic activity. Applied Surface Science, 403, 699-706.
[3]Wang, N., Pan, Y*., Wu, S., Zhang, E., & Dai, W. (2017). Fabrication of nanoporous copper with tunable ligaments and promising sonocatalytic performance by dealloying Cu–Y metallic glasses. RSC Advances, 7 (68), 43255-43265.
[4]薄兵,潘冶,陆韬,高军民,易曼丽, &王俊有. (2017).工艺参数对adc12铝合金压铸件微孔缺陷与力学性能的影响.铸造, 66 (2), 127-130.
2016年发表文章:
[1]Wu, J., Li, X., Cao, H., Pan, Y*., & Zhu, Y. (2016). Ultraviolet light irradiation on pitting corrosion of Cu-based bulk metallic glasses. Journal of Alloys and Compounds, 661, 345-348.
[2]Wu, J., Li, W., Pan, Y*., Qi, J., & Wang, J. (2016). Microalloying and microstructures of Cu-based bulk metallic glasses & composites and relevant mechanical properties. Materials & Design, 89, 1130-1136.
[3]Li, X., Pan, Y*., Wu, J., Lu, T., & Wang, N. (2016). Efficient photodecomposition of rhodamine B by an Fe-based metallic glass in an oxalic acid solution. RSC Advances, 6 (95), 92411-92416.
[4]王先飞,潘冶,吴继礼, &李星洲. (2016). Cu-ti合金与h2o2直接氧化法制备cu掺杂tio2薄膜.材料工程, 44 (1), 26-32.
2015年发表文章:
[1]Wu, J., Pan, Y*., Li, X., & Wang, X. (2015). Microstructure evolution and mechanical properties of nb-alloyed cu-based bulk metallic glasses and composites. Materials & Design, 75, 32-39.
[2]Lu, T., Wu, J., Pan, Y*., Tao, S., & Chen, Y. (2015). Optimizing the tensile properties of al–11si–0.3mg alloys: role of cu addition. Journal of Alloys & Compounds, 631, 276-282.
[3]Lu, T., Pan, Y*., Wu, J. L., Tao, S. W., & Chen, Y. (2015). Effects of La addition on the microstructure and tensile properties of Al-Si-Cu-Mg casting alloys. International Journal of Minerals, Metallurgy, and Materials, 22 (4), 405-410.
[4]Lu, T., Wu, J. L., Pan, Y*., Tao, S. W., & Chen, Y. (2015). Role of heat treatment in the improvement of mechanical properties of a high-quality Al-11Si-1.5 Cu-0.3 Mg casting alloy. China Foundry, 12(2).
2014年发表文章:
[1]Wang, X., Pan, Y*., Zhu, Z., & Wu, J. (2014). Efficient degradation of rhodamine b using fe-based metallic glass catalyst by fenton-like process. Chemosphere, 117 (1), 638-643.
[2]Chen, Y., Pan, Y*., Lu, T., Tao, S., & Wu, J. (2014). Effects of combinative addition of lanthanum and boron on grain refinement of al–si casting alloys. Materials & Design, 64 (9), 423-426.
[3]Zhang, H*., Pan, Y., He, Y. Z., Wu, J. L., Yue, T. M., & Guo, S. (2014). Application prospects and microstructural features in laser-induced rapidly solidified high-entropy alloys. ChemInform, 46 (46), 2057-2066.
[4]Xingzhou Li, & Ye Pan*. (2014). Magnetocaloric effect in fe-zr-b-m (m=ni, co, al, and ti) amorphous alloys. Journal of Applied Physics, 116 (9), 305.
[5]Wu, J., Pan, Y*., Li, X., & Wang, X. (2014). New insight on glass-forming ability and designing Cu-based bulk metallic glasses: the solidification range perspective. Materials & Design, 61, 199-202.
[6]Zhang, H., He, Y. Z., Pan, Y., & Guo, S*. (2014). Thermally stable laser cladded cocrcufeni high-entropy alloy coating with low stacking fault energy. Journal of Alloys & Compounds, 600 (600), 210-214.
[7]Wu, J., Pan, Y*., Li, X., & Wang, X. (2014). Composition design of plastic cu–zr–ti–ni bulk metallic glass: a liquidus perspective. Materials Science & Engineering A, 608 (608), 16-20.
[8]Wu, J., Pan, Y*., Li, X., & Wang, X. (2014). Designing plastic cu-based bulk metallic glass via minor addition of nickel. Materials & Design,57 (57), 175-179.
[9]Wu, J., Pan, Y*., & Pi, J. (2014). Nanoindentation study of cu 52 zr 37 ti 8 in 3, bulk metallic glass. Applied Physics A, 115 (1), 305-312.
[10]Pan, Y*., Zeng, Y., Jing, L., Zhang, L., & Pi, J. (2014). Composition design and mechanical properties of ternary cu–zr–ti bulk metallic glasses. Materials & Design, 55(6), 773-777.
[11]Wu, J., Pan, Y*., & Pi, J. (2014). Nanoindentation mechanical properties of indium-alloyed cu-based bulk metallic glasses. Journal of Materials Engineering & Performance, 23 (2), 486-492.
[12]Wu, J., & Pan, Y*. (2014). Designing primary phase-embedded Cu-based bulk metallic glass composites: a computational thermodynamic approach. RSC Advances, 4 (94), 52203-52208.
[13]Jinhong, P., Ye, P*., Jili, W., & Xiancong, H. (2014). Influence of minor addition of in on corrosion resistance of Cu-based bulk metallic glasses in 3.5% NaCl solution. Rare Metal Materials and Engineering, 43 (1), 32-35.
[14]Wu, J., Pan, Y*., & Pi, J. (2014). On non-isothermal kinetics of two cu-based bulk metallic glasses. Journal of Thermal Analysis & Calorimetry,115 (1), 267-274.
2013年发表文章:
[1]Jin-Hong, P. I., Pan, Y*., Ji-Li, W. U., Zhang, L., & Xian-Cong, H. E. (2013). Preparation and properties of novel cu-based bulk metallic glasses cu 55– x zr 37 ti 8 in x. Transactions of Nonferrous Metals Society of China,23 (10), 2989-2993.
[2]Zhang, H*., He, Y., & Pan, Y. (2013). Enhanced hardness and fracture toughness of the laser-solidified feconicrcutimoalsib 0.5, high-entropy alloy by martensite strengthening. Scripta Materialia, 69 (4), 342-345.
[3]Wu, J., Pan, Y*., & Pi, J. (2013). On indentation creep of two cu-based bulk metallic glasses via nanoindentation. Physica B Physics of Condensed Matter, 421 (4), 57-62.
[4]Pi, J., & Pan, Y*. (2013). Thermodynamic analysis for microstructure of high-entropy alloys. Rare Metal Materials & Engineering, 42 (2), 232-237.
[5]Wu, J., Pan, Y*., Huang, J., & Pi, J. (2013). Non-isothermal crystallization kinetics and glass-forming ability of Cu–Zr–Ti–In bulk metallic glasses. Thermochimica acta, 552, 15-22.
2012年发表文章:
[1]Jinhong, P., Ye, P*., Hui, Z., & Lu, Z. (2012). Microstructure and properties of AlCrFeCuNix (0.6≤ x≤ 1.4) high-entropy alloys. Materials Science and Engineering: A, 534, 228-233.
[2]Lu, T., & Pan, Y*. (2012). Analysis of thermal explosion process for preparing ferromagnetic Al2O3-based cermets. Materials and Manufacturing Processes, 27 (9), 914-918.
[3]陆韬,潘冶, &董薰. (2012).燃烧合成co(ti)-al2o3金属陶瓷的组织与性能.材料工程 (3), 28-31.
[4]Zhao, L., Pan, Y*., Liao, H., & Wang, Q. (2012). Degassing of aluminum alloys during re-melting. Materials Letters, 66(1), 328-331.
2011年发表文章:
[1]Zhang, H., Pan, Y*., & He, Y. (2011). Laser cladding feconicral_2si high-entropy alloy coating. Acta Metallurgica Sinica, 47(8), 1075-1079.
[2]Pi, J. H., Pan, Y*., Zhang, L., & Zhang, H. (2011). Microstructure and property of alticrfenicu high-entropy alloy. Journal of Alloys & Compounds, 509(18), 5641-5645.
[3]Zhang, H., Pan, Y*., & He, Y. Z. (2011). Synthesis and characterization of feconicrcu high-entropy alloy coating by laser cladding. Materials & Design, 32(4), 1910-1915.
[4]潘冶,纪秀林,皮锦红, &张露. (2011).微量元素对cu-zr-al块体金属玻璃形成能力及力学性能的影响.中国有色金属学报, 21(3), 583-587.
[5]Lei, Z., Hengcheng, L., Ye, P*., Qigui, W., & Guoxiong, S. (2011). In-situ observation of porosity formation during directional solidification of Al-Si Casting Alloys. Research & Development.
[6]Zhang, H., Ye, P*., He, Y., & Jiao, H. (2011). Microstructure and properties of 6fenicosicralti high-entropy alloy coating prepared by laser cladding. Applied Surface Science, 257(6), 2259-2263.
[7]Lu, T., & Pan, Y*. (2011). Synthesis of Al2O3-(Co, Ni) cermets via thermal explosion method. Materials and Manufacturing Processes, 26(10), 1288-1292.
2010年发表文章:
[1]Lu T, Pan, Y*. Combustion synthesis of ferromagnetic Al2O3-based cermets in thermal explosion mode[J]. Journal of Materials Science, 2010, 45 (21): 5923-5928.
[2]Pan, Y*, Cao H, Ding L, et al. Novel bulkier copper-rich ternary metallic glasses from computational thermodynamics[J]. Journal of Non-Crystalline Solids, 2010, 356 (41-42): 0-2171.
[3]梁昌霞,潘冶*,王凤云. CeO2对铁基自润滑轴承材料性能的影响[J].材料导报, 2010, 024 (016): 57-61.